Форум Абхазии | ЖК "Москва" | ЖК "Остров Мечты" | ПМЖ в Сочи | АК "Актёр Гэлакси" | ЖК "Огни Сочи" | ЖК "Романовский"

Для регистрации на форуме AllSochi.info пишите на почту: 7777636@mail.ru желаемый логин или на WhatsApp: +7 (966) 777-76-36

Вернуться   Форум об отдыхе в Сочи 2025 😎, Адлере, Хосте, Лазаревской, Геленджике, Анапе, Крыму, Абхазии. Отзывы. Частные гостиницы. Санатории. Недвижимость. > Дела семейные > Всё о детях и для детей

Всё о детях и для детей Дети цветы жизни

Если Вы уже отдохнули или переехали на ПМЖ, расскажите о своём переезде или отдыхе, примите участие в конкурсе с денежными призами!



Ответ
 
Опции темы
Старый 21.07.2011, 15:31   #1
BorisN91
Участник
 
Аватар для BorisN91
 
Регистрация: 21.06.2007
Адрес: Адлер Москва Palmnicken
Сообщений: 2,113
Репутация: 61454
Малыши и математика

Звонкин "Малыши и математика"

Замечательная книга для родителей - "Малыши и математика" Звонкина.

Дам для затравки цитату, которая меня покорила сразу же:
Цитата:
...

Когда она начинается? Такие сценки каждый из вас наблюдал не раз. Мама прячется за штору, потом с улыб-
кой выглядывает и говорит: <Ку-ку!>. Иснова прячется.Асовсем ещё крошечный малыш при каждом её появлении
хлопает в ладоши и радостно визжит. Оба совершенно счастливы. Обоим, конечно же, и в голову не приходит,
что они занимаются математикой.

Я написал эту фразу не для того, чтобы шокировать читателя или подцепить его на удочку притянутого за уши
парадокса. Я это всерьёз. Если почитать труды психологов, можно узнать, что в возрасте до полутора лет основ-
ная интеллектуальная задача, которая стоит перед ребёнком, заключается в том, чтобы открыть закон постоянства
объектов. То есть, что вещи не исчезают, когда мы перестаём их видеть, а остаются существовать там же, где
были, — существовать без нас. Оказывается, такой важный объект, как мама, исчезнув за портьерой, всё же
продолжает быть где-то здесь, и вскоре появляется из-за той же портьеры...


Все, что я знал об обучении детей (а в университете мы проходили формальный курс педагогики плюс педпрактика в школах), оказалось абсолютно не логичным после прочтения книги. Я дам большой кусок текста о главный принципиальных сложностях, которые встают перед ребенком, когда его пытаются научить считать. Для наглядности автор проводит параллель с обучением речи:

...Пройдёт ещё немного времени, и ребёнка начнут уже совершенно сознательно <обучать математике>. На практике это обычно
означает, что его будут учить считать. Спору нет, умение считать — вещь важная и полезная. Но нам, взрослым, бывает очень трудно понять, что´ это умение означает в реальности. Давайте встанем на место ребёнка и попробуем сами научиться арифме-
тике... но только по-японски!

Итак, вот вам первые десять чисел: и´ ти, ни, сан, си, го, ро´ ку, си´ ти, ха´ ти, ку, дзю.
Первое задание — выучить эту последовательность наизусть. Вы увидите, что это не так-то просто. Когда это наконец удастся, можете приступать ко второму заданию: попробуйте научиться считать также и в обратном порядке, от дзю до ити. Если и это уже удаётся, давайте начнём вычислять. Сколько будет к року прибавить сан? А от сити отнять го? А хати поделить на си?

А теперь давайте решим задачу. Мама купила на базаре ку яблок и дала по ни яблок каждому из си детей; сколько яблок у неё осталось? Очень трудное, но обязательное условие — не переводить на русский, даже в уме...
...

Вторая тема, традиционно фигурирующая в дошкольной математике—это геометрия. Считается, что детям нужно сообщить
некоторый (довольно скромный) набор сведений, касающихся геометрических фигур: что такое треугольник, квадрат,
круг, угол, прямая, отрезок, а также научить их простейшим приёмам измерения.

Но давайте вдумаемся: если ребёнок легко отличает вилку от ложки, почему же ему трудно отличить квадрат от треугольника? Да ему и не трудно вовсе! В чём он действительно испытывает трудность, так это в уяснении логических взаимоотношений между
понятиями, а также тех действий, которые можно с фигурами совершать.

Многие первоклассники, например, считают, что если нарисовать квадрат косо (повернутым на 45 градусов), то он перестанет быть квадратом и станет просто четырёхугольником. А вопрос о том, чего вообще больше — квадратов или четырёхугольников, тре-
бует уже вовсе недюжинной логики.

...

В своих опытах он установил: маленькие дети не понимают того, что нам с вами кажется самоочевидным —если
несколько предметов как-нибудь переставить или переместить, то их количество от этого не изменится...К сожалению, самый распространённый приём, которым пользуются в такой ситуации почти все взрослые, состоит в том, чтобы начать детям изо
всех силчто-то втолковывать. "Ну как же так! — с наигранным удивлением говорит взрослый.—Откуда же их могло стать больше? Ведь мы же никаких новых монет не добавляли! Ведь мы их только раздвинули — и всё. Ведь раньше же их было поровну — вы же
сами говорили! Значит, их никак не могло стать больше. К о н е ч н о ж е (выделяем голосом), монет и пуговиц осталось поровну!"

Старания напрасны — такая педагогика никуда не ведёт. Точнее, ведёт в тупик. Во-первых, не надейтесь, что ваша логика в чём-нибудь убедит ребёнка.Логические структурыон усвоит ещё позже, чем закон сохранения количества предметов.Пока этого не произойдёт, логические рассуждения не покажутся ему убедительными. Убедительной является только интонация вашего го-
лоса. А она покажет ребёнку лишь то, что он опять оказался не на высоте и что-то сделал не так. Дети сдаются не сразу, их здравый смыслне так-то легко сломить. Но если насесть как следует, можно добиться того, что они перестанут опираться на собственный
ум и наблюдательность, а будут пытаться угадать, чего желает от них взрослый. Взрослые вообще предъявляют детям множество необъяснимых требований: почему-то нельзя рисовать на стене; почему-то надо идти ложиться спать, когда игра в самом разгаре;
почему-то нельзя спрашивать: "А когда этот дядя уйдёт?". Вот и сейчас происходит что-то аналогичное: хотя я прекрасно вижу, что монет больше, чем пуговиц, но почему-то полагается отвечать, что их поровну. Отношение к математике как к некоему ритуалу,
в котором нужно произносить определённые заклинания в определённом порядке, зарождается в школе и прекрасно доживает до университета, где его можно встретить даже у студентов-математиков.

Так что же всё-таки делать? Вообще не задавать подобных вопросов, что ли, если уж нельзя прокомментировать ответ?
Напротив, задавать вопросы как раз нужно. Очень полезно также обменяться мнениями: <А ты, Женя, как думаешь? А ты,Петя?А почему? А на сколько монет стало больше?> Можно даже наравне с остальнымивысказать и свою точку зрения, но очень осторожно и ненавязчиво, снабдив всяческими оговорками типа <мне кажется> и <может быть>. Иными словами, весь свой ав-
торитет взрослого нужно употребить не на то, чтобы закрепить за этим авторитетом абсолютную власть единственно
правильного суждения, а на то, чтобы убедить ребёнка в важности и ценности его собственных поисков и усилий.

Но ещё интереснее натолкнуть его на противоречия в его собственной точке зрения...

...
—А чего вообще на свете больше — квадратов или четырёхугольников?
—Квадратов! — дружно и без тени сомнения отвечают дети.
—Потому что их легче вырезать, — объясняет Дима.
—Потому что их много в домах, на крыше, на трубе, — объясняет Женя.

Такова завязка этой истории. А развязка произошла через полтора года, без всякой подготовкии даже без всякого внешнего повода. Летом на прогулке в лесу Дима неожиданно сказал мне:
—Папа, помнишь, ты давал нам задачу про квадраты и четырёхугольники — чего больше. Так мне кажется, мы тогда тебе неправильно ответили. На самом деле больше четырёхугольников.

И дальше довольно толково объяснил, почему. С тех пор я и исповедую принцип: вопросы важнее ответов.

...
Вся книга написана в основном в виде описания и разбора уроков с малышами. В этой математике нет ничего того, что привыкли видеть мы. Кроме того, Звонкин нашел способ научить детей понимать смысл алгоритмов и программирования. Все задачи и упражнения подробно описаны в книге.

В общем - рекомендую для общего развития вообще и для обучения детской педагогике - в частности.

Кстати сам автор довольно успешный математик, который просто хотел научить своего сына и его друзей основам логики. Основа книги - его дневники, которые он вел в 80-90х годах, записывая свои наблюдения. Он не выдвигает теорий - он просто описывает свои наблюдения; а большая часть книги - это просто конспект занятий, без всякой философии о детском уме и нашей ответственности перед миром - что очень приятно читать.

Скачать здесь: Ссылка скрыта"

Подсмотрел у Ссылка скрыта

Последний раз редактировалось BorisN91; 21.07.2011 в 15:56.
BorisN91 вне форума   Ответить с цитированием
Старый 20.11.2011, 17:26   #2
miklovsha
Участник
 
Аватар для miklovsha
 
Регистрация: 03.11.2011
Сообщений: 99
Репутация: 3276
спасибо. Я даже домашнее задание не могу заставить сделать, что там говорить о еще одной книге. Даже не знаю, как бороться. Ребенок совершено не хочет учиться
miklovsha вне форума   Ответить с цитированием
Ответ


Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Быстрый переход


Текущее время: 21:12. Часовой пояс GMT +3.

Copyright © 2004 - 2025 AllSochi.info

Яндекс.Метрика Top.Mail.Ru

Powered by vBulletin® Version 3.8.7 Copyright ©2000 - 2025, vBulletin Solutions, Inc. Перевод: zCarot